86 lines
1.7 KiB
Python
86 lines
1.7 KiB
Python
|
#!/usr/bin/python
|
||
|
|
||
|
from scipy import ndimage
|
||
|
import sys
|
||
|
import math
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
print("Name: {}".format(__name__))
|
||
|
if __name__ != "__main__":
|
||
|
print("not runned")
|
||
|
sys.exit(0)
|
||
|
|
||
|
if len(sys.argv) <= 1:
|
||
|
print("Too small arguments")
|
||
|
sys.exit(1)
|
||
|
|
||
|
path = sys.argv[1]
|
||
|
|
||
|
img = ndimage.imread(path)
|
||
|
img_gray = img[:,:,0]
|
||
|
|
||
|
(n,m) = img_gray.shape
|
||
|
mask = img_gray >= 128
|
||
|
|
||
|
sx = 0.0
|
||
|
sy = 0.0
|
||
|
c = 0
|
||
|
|
||
|
for i in range(0, n):
|
||
|
for j in range(0, m):
|
||
|
if mask[i,j]:
|
||
|
sx += j
|
||
|
sy += i
|
||
|
c += 1
|
||
|
|
||
|
ax = sx / c
|
||
|
ay = sy / c
|
||
|
|
||
|
print("Position: {} x {}".format(ax,ay))
|
||
|
|
||
|
grav_measure = 0.0
|
||
|
|
||
|
for i in range(0, n):
|
||
|
for j in range(0, m):
|
||
|
if mask[i,j]:
|
||
|
grav_measure += (j - ax) * (j - ax) + (i - ay) * (i - ay)
|
||
|
|
||
|
grav_measure2 = math.sqrt(grav_measure / c)
|
||
|
|
||
|
print("Grav measure: {}".format(grav_measure))
|
||
|
|
||
|
# vector of offset
|
||
|
|
||
|
ox = 0.0
|
||
|
oy = 0.0
|
||
|
|
||
|
for i in range(0, n):
|
||
|
for j in range(0, m):
|
||
|
if mask[i,j]:
|
||
|
ox += math.pow(j - ax, 1.0)
|
||
|
oy += math.pow(i - ay, 1.0)
|
||
|
|
||
|
print("Vector of offset (measure of beaing simetrical): {}x{}".format(ox,oy))
|
||
|
|
||
|
img_filled = ndimage.binary_fill_holes(img_gray)
|
||
|
s = np.sum(img_filled)
|
||
|
unit = max(n,m)
|
||
|
c2 = c / float(unit)
|
||
|
s2 = s / (float(unit)*float(unit))
|
||
|
print("l: {}, s: {}".format(c2,s2))
|
||
|
# plt.imshow(img_filled, cmap="Greys_r")
|
||
|
# plt.show()
|
||
|
|
||
|
circularity1 = 2.0 * math.sqrt(s2 / np.pi)
|
||
|
print("Circularity1: {}".format(circularity1))
|
||
|
|
||
|
circularity2 = c2 / math.pi
|
||
|
print("Circularity2: {}".format(circularity2))
|
||
|
|
||
|
w_measure = c2 / (2.0 * math.sqrt(np.pi * s2)) - 1.0
|
||
|
print("W measure: {}".format(w_measure))
|
||
|
|
||
|
w9_measure = 2.0 * math.sqrt(np.pi * s2) / c2
|
||
|
print("W9 measure (malinkowskiej) {}".format(w9_measure))
|