code-examples/2015/2015_03/shoe-soles/poi_shoe_detection2.py

243 lines
6.8 KiB
Python
Raw Normal View History

import numpy as np
import math
from scipy import ndimage,spatial
import matplotlib.pyplot as plt
from skimage import feature
from skimage.feature import corner_harris, corner_subpix, corner_peaks
from sklearn.cluster import KMeans
from skimage.filters import threshold_otsu
from skimage.draw import line_aa
import math
import sys
def grayscale_luminosity(img):
return 0.21*img[:,:,0] + 0.72 * img[:,:,1] + 0.07 * img[:,:,2]
def kmeans_cluster(img_gray):
img_gray_reshaped = img_gray.reshape((-1,1))
print("About to start k-means clustering")
k = KMeans(n_clusters = 5)
print("Starting k-means clustring")
k.fit(img_gray_reshaped)
print("Finished k-means clustering")
values = k.cluster_centers_.squeeze()
labels = k.labels_
return (values, labels)
def corners_seg(img_labels2):
coords = corner_peaks(corner_harris(img_labels2), min_distance=5)
coords_subpix = corner_subpix(img_labels2, coords, window_size=13)
return (coords, coords_subpix)
def reassign_labels(labels1, values1, labels2, values2):
# TODO not efficient computionally
if values1.length != values2.length:
return None
n = values1.length
c_min = 1e8 # TODO max value of float
reassignment = np.array((n, 2))
for i in range(0, n):
e1 = values1[i]
for j in range(0, n):
e2 = values2[j]
d = np.sum(np.abs(e2-e1))
if d < c_min:
c_min = d
reassignment[i,0] = labels1[i]
reassignment[i,1] = labels2[j]
return reassignment
def compare_by_poi(img1, img2, xwindow = 5, ywindow = 5):
# both images are matrix of 0s or 1s
k = np.ones((xwindow,ywindow))
middlex = (xwindow-1) / 2
middley = (ywindow-1) / 2
k[middlex,middley] = 0
img2_neighbour_count_int = ndimage.convolve(img2)
img2_neighbour_count_bool = img2_neighbour_count_int > 0
img2_neighbour_count_int2 = np.array(img2_neighbour_count_bool, dtype=np.uint32)
img_comparision = img2_neighbour_count_int2 * img1
n1 = np.sum(img1)
n2 = np.sum(img_comparision)
return float(n2)/float(n1)
def find_first_marked_point(crossing_mask):
(n,m) = crossing_mask.shape
for i in range(0,n):
for j in range(0,m):
if crossing_mask[i,j]:
return (j,i)
return None
def MSE(a1, a2):
c = 1
for n in a1.shape:
c *= n
d = a1 - a2
return np.sum(d*d) / n
nsampling = 100
def calculate_shape_vector(
path,
nsampling,
median_filter_size = 10,
sweep_line_length = 1024.0):
img = ndimage.imread(path)
print("Image read")
img_gray_not_filtered = grayscale_luminosity(img)
img_gray = ndimage.median_filter(img_gray_not_filtered,
size=median_filter_size)
# fig = plt.figure(figsize=(15,15))
otsu_lvl = threshold_otsu(img_gray)
print(otsu_lvl)
mask = img_gray <= otsu_lvl
# plt.imshow(mask, cmap="Greys_r")
# plt.show()
otsu_sub_mask_lvl = threshold_otsu(img_gray[mask])
mask2 = img_gray <= otsu_sub_mask_lvl
sub_mask = mask * mask2
sub_mask2 = mask * (True ^ mask2)
# plt.imshow(sub_mask, cmap="Greys_r")
# plt.show()
# plt.imshow(sub_mask2, cmap="Greys_r")
# plt.show()
label_im, nb_labels = ndimage.label(sub_mask2)
print("Nr of regions: {}".format(nb_labels))
sizes = ndimage.sum(sub_mask2, label_im, range(nb_labels + 1))
mask_size = sizes < 500
print("Liczba usunietych: {}".format(np.sum(mask_size)))
remove_pixel = mask_size[label_im]
label_im[remove_pixel] = 0
# plt.imshow(label_im)
# plt.show()
centers = np.zeros((nb_labels+1-np.sum(mask_size),2))
idx = 0
for i in range(0, nb_labels+1):
if mask_size[i]:
continue
# processing that means calculating segment parameters
mask_segment = label_im == i
centers[idx,:] = ndimage.center_of_mass(mask_segment)
idx += 1
print("Centers: {}".format(centers))
centers2 = np.copy(centers)
(n,m) = img_gray.shape
centers2[:,0] = centers[:,0] / float(n)
centers2[:,1] = centers[:,0] / float(m)
print("Centers 2: {}".format(centers2))
mask_int = np.array(mask, dtype=np.uint32)
label_im, nb_labels = ndimage.label(mask_int)
sizes = ndimage.sum(mask, label_im, range(nb_labels + 1))
mask_size = sizes < 0
remove_pixel = mask_size[label_im]
label_im[remove_pixel] = 0
edges2 = feature.canny(label_im > 0)
# plt.imshow(edges2, cmap="Greys_r")
sx = 0.0
sy = 0.0
c = 0
(n,m) = edges2.shape
print("Width: {}, height: {}".format(n, m))
for i in range(0, n):
for j in range(0, m):
if edges2[i,j]:
c += 1
sx += j
sy += i
sx /= c
sy /= c
print("Middle ({}x{})".format(sx,sy))
# plt.plot([sx], [sy], "r+")
line_length = sweep_line_length
angle_step = 2.0 * np.pi / nsampling
dist_vector = np.zeros((nsampling), dtype=np.float32)
dist_vector[:] = 1e8 # TODO add here infinitium
for i in range(0,nsampling):
line_arr = np.zeros((n,m), dtype=np.bool)
rr,cc,val = line_aa(int(math.floor(sy)),
int(math.floor(sx)),
int(math.floor(sy+line_length*math.sin(angle_step*i))),
int(math.floor(sx+line_length*math.cos(angle_step*i))))
m1 = rr >= 0
m2 = rr < n
m3 = cc >= 0
m4 = cc < m
mall = m1 * m2 * m3 * m4
cc2 = cc[mall]
rr2 = rr[mall]
val2 = val[mall]
line_arr[rr2,cc2] = val2 > 0
crossing_mask = (edges2 * line_arr)
# TODO find one (first - best) crossing point and mark him
p = find_first_marked_point(crossing_mask)
if p != None:
plt.plot([p[0]], [p[1]], "r+")
dist_vector[i] = math.sqrt((p[0] - sx)*(p[0] - sx) + (p[1] - sy)*(p[1] - sy))
# plt.show()
return (mask, dist_vector / np.min(dist_vector), centers2)
if len(sys.argv) < 2:
print("Too small arguments")
sys.exit(1)
(img_gray1, v1, centers1) = calculate_shape_vector(sys.argv[1],nsampling)
if len(sys.argv) < 3:
print("To small arguments to compare")
sys.exit(0)
(img_gray2, v2, centers2) = calculate_shape_vector(sys.argv[2],nsampling)
# (img_gray2, v2) = calculate_shape_vector("italian-sole-new-800_1_2_1.jpg",nsampling)
def compare_sets(c1, c2):
k = spatial.KDTree(c1)
s = 0.0
(n,m) = c2.shape
for i in range(0, n):
(d,idx) = k.query(c2[i,:])
s += d*d
s /= float(n)
return math.sqrt(s)
print("v1")
print(v1)
print("v2")
print(v2)
diff = v1-v2
print("Diff: {}".format(diff))
mse = np.sum(diff*diff)/nsampling
print("MSE: {}".format(MSE(v1,v2)))
print("Diff between sets of points: {}"
.format(compare_sets(centers1, centers2)))