code-examples/2015/2015_03/shoe-soles/dect.py

76 lines
2.1 KiB
Python
Raw Normal View History

from scipy import ndimage
from skimage import filters,feature
import sys
import matplotlib.pyplot as plt
import math
import numpy as np
import pdb
def calculate_edges(img):
# TODO fix the performance - added ad hoc
(n,m) = img.shape
edge = np.zeros((n,m), dtype=np.bool)
# pdb.set_trace()
for i in range(0, n):
for j in range(0, m):
edge_point = False
for k in range(-1, 2):
if edge_point:
break
for l in range(-1,2):
if edge_point:
break
y = (i+k)%n
x = (j+l)%m
if img[y,x] != img[i,j]:
edge_point = True
break
edge[i,j] = edge_point
return edge
def calc_shape_corners(img_mask2, range_ext=8):
(my,mx) = ndimage.center_of_mass(img_mask2)
# edge = feature.canny(img_mask2)
edge = calculate_edges(img_mask2)
(n,m) = img_mask2.shape
print("Center of mass {}x{}".format(mx,my))
distances = np.zeros((n,m), dtype=np.float)
distances[:,:] = 0
for i in range(0, n):
for j in range(0, m):
if edge[i,j]:
dx = j - mx
dy = i - my
d = math.sqrt(dx*dx+dy*dy)
distances[i,j] = d
max_distances = ndimage.maximum_filter(distances, range_ext)
diff = np.abs(max_distances - distances)
corners = edge * (diff < 1e-3)
return corners
if __name__ == "__main__":
img = ndimage.imread(sys.argv[1])
img_gray = 0.21 * img[:,:,0] + 0.72 * img[:,:,1] + 0.07 * img[:,:,2]
otsu_lvl = filters.threshold_otsu(img_gray)
img_mask = img_gray <= otsu_lvl
img_mask2 = ndimage.median_filter(img_mask, 3)
(n,m) = img_mask2.shape
corners = calc_shape_corners(img_mask2)
mat_x = np.tile(np.arange(0,m),n).reshape((n,m))
mat_y = np.tile(np.arange(0,n),m).reshape((m,n)).T
xs = mat_x[corners]
ys = mat_y[corners]
plt.imshow(img_gray, cmap="Greys_r")
plt.plot(xs, ys, "r+")
plt.show()