# coding: utf-8 import sys import matplotlib.pyplot as plt from scipy import ndimage path = sys.argv[1] print("I am reading {}".format(path)) img = ndimage.imread(path) print("I have read") img_gray = 0.21 * img[:,:,0] + 0.72 * img[:,:,1] + 0.07 * img[:,:,2] # plt.imshow(img_gray, cmap="Greys_r") # plt.show() from sklearn.cluster import KMeans k = KMeans(n_clusters=5) img_reshaped = img_gray.reshape((-1,1)) k.fit(img_reshaped) values = k.cluster_centers_.squeeze() labels = k.labels_ # labels img_labels = labels.reshape(img_gray.shape) # img_labels # plt.imshow(img_labels) # plt.show() # get_ipython().magic(u'pinfo ndimage.median_filter') # get_ipython().magic(u'pinfo ndimage.median_filter') # get_ipython().magic(u'pinfo ndimage.median_filter') img_labels2 = ndimage.median_filter(img_labels, 3) # plt.imshow(img_labels2) # plt.show() from skimage.feature import corner_harris, corner_subpix, corner_peaks coords = corner_peaks(corner_harris(img_labels2), min_distance=5) coords_subpix = corner_subpix(img_labels2, coords, window_size=13) fig, ax = plt.subplots() ax.imshow(img_labels2, interpolation='nearest', cmap=plt.cm.gray) ax.plot(coords[:, 1], coords[:, 0], '.b', markersize=3) ax.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15) # ax.axis((0, 350, 350, 0)) plt.show() # fig, ax = plt.subplots() # ax.imshow(img_labels2, interpolation='nearest', cmap=plt.cm.gray) # ax.plot(coords[:, 1], coords[:, 0], '.b', markersize=3) # ax.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15) # plt.show() # get_ipython().magic(u'save poi_shoe_detection.py 1-39')