import numpy as np import math from scipy import ndimage,spatial import matplotlib.pyplot as plt from skimage import feature from skimage.feature import corner_harris, corner_subpix, corner_peaks from sklearn.cluster import KMeans from skimage.filters import threshold_otsu from skimage.draw import line_aa import math import sys def grayscale_luminosity(img): return 0.21*img[:,:,0] + 0.72 * img[:,:,1] + 0.07 * img[:,:,2] def kmeans_cluster(img_gray): img_gray_reshaped = img_gray.reshape((-1,1)) print("About to start k-means clustering") k = KMeans(n_clusters = 5) print("Starting k-means clustring") k.fit(img_gray_reshaped) print("Finished k-means clustering") values = k.cluster_centers_.squeeze() labels = k.labels_ return (values, labels) def corners_seg(img_labels2): coords = corner_peaks(corner_harris(img_labels2), min_distance=5) coords_subpix = corner_subpix(img_labels2, coords, window_size=13) return (coords, coords_subpix) def reassign_labels(labels1, values1, labels2, values2): # TODO not efficient computionally if values1.length != values2.length: return None n = values1.length c_min = 1e8 # TODO max value of float reassignment = np.array((n, 2)) for i in range(0, n): e1 = values1[i] for j in range(0, n): e2 = values2[j] d = np.sum(np.abs(e2-e1)) if d < c_min: c_min = d reassignment[i,0] = labels1[i] reassignment[i,1] = labels2[j] return reassignment def compare_by_poi(img1, img2, xwindow = 5, ywindow = 5): # both images are matrix of 0s or 1s k = np.ones((xwindow,ywindow)) middlex = (xwindow-1) / 2 middley = (ywindow-1) / 2 k[middlex,middley] = 0 img2_neighbour_count_int = ndimage.convolve(img2) img2_neighbour_count_bool = img2_neighbour_count_int > 0 img2_neighbour_count_int2 = np.array(img2_neighbour_count_bool, dtype=np.uint32) img_comparision = img2_neighbour_count_int2 * img1 n1 = np.sum(img1) n2 = np.sum(img_comparision) return float(n2)/float(n1) def find_first_marked_point(crossing_mask): (n,m) = crossing_mask.shape for i in range(0,n): for j in range(0,m): if crossing_mask[i,j]: return (j,i) return None def MSE(a1, a2): c = 1 for n in a1.shape: c *= n d = a1 - a2 return np.sum(d*d) / n nsampling = 100 def calculate_shape_vector( path, nsampling, median_filter_size = 10, sweep_line_length = 1024.0): img = ndimage.imread(path) print("Image read") img_gray_not_filtered = grayscale_luminosity(img) img_gray = ndimage.median_filter(img_gray_not_filtered, size=median_filter_size) # fig = plt.figure(figsize=(15,15)) otsu_lvl = threshold_otsu(img_gray) print(otsu_lvl) mask = img_gray <= otsu_lvl # plt.imshow(mask, cmap="Greys_r") # plt.show() otsu_sub_mask_lvl = threshold_otsu(img_gray[mask]) mask2 = img_gray <= otsu_sub_mask_lvl sub_mask = mask * mask2 sub_mask2 = mask * (True ^ mask2) # plt.imshow(sub_mask, cmap="Greys_r") # plt.show() # plt.imshow(sub_mask2, cmap="Greys_r") # plt.show() label_im, nb_labels = ndimage.label(sub_mask2) print("Nr of regions: {}".format(nb_labels)) sizes = ndimage.sum(sub_mask2, label_im, range(nb_labels + 1)) mask_size = sizes < 500 print("Liczba usunietych: {}".format(np.sum(mask_size))) remove_pixel = mask_size[label_im] label_im[remove_pixel] = 0 # plt.imshow(label_im) # plt.show() centers = np.zeros((nb_labels+1-np.sum(mask_size),2)) idx = 0 for i in range(0, nb_labels+1): if mask_size[i]: continue # processing that means calculating segment parameters mask_segment = label_im == i centers[idx,:] = ndimage.center_of_mass(mask_segment) idx += 1 print("Centers: {}".format(centers)) centers2 = np.copy(centers) (n,m) = img_gray.shape centers2[:,0] = centers[:,0] / float(n) centers2[:,1] = centers[:,0] / float(m) print("Centers 2: {}".format(centers2)) mask_int = np.array(mask, dtype=np.uint32) label_im, nb_labels = ndimage.label(mask_int) sizes = ndimage.sum(mask, label_im, range(nb_labels + 1)) mask_size = sizes < 0 remove_pixel = mask_size[label_im] label_im[remove_pixel] = 0 edges2 = feature.canny(label_im > 0) # plt.imshow(edges2, cmap="Greys_r") sx = 0.0 sy = 0.0 c = 0 (n,m) = edges2.shape print("Width: {}, height: {}".format(n, m)) for i in range(0, n): for j in range(0, m): if edges2[i,j]: c += 1 sx += j sy += i sx /= c sy /= c print("Middle ({}x{})".format(sx,sy)) # plt.plot([sx], [sy], "r+") line_length = sweep_line_length angle_step = 2.0 * np.pi / nsampling dist_vector = np.zeros((nsampling), dtype=np.float32) dist_vector[:] = 1e8 # TODO add here infinitium for i in range(0,nsampling): line_arr = np.zeros((n,m), dtype=np.bool) rr,cc,val = line_aa(int(math.floor(sy)), int(math.floor(sx)), int(math.floor(sy+line_length*math.sin(angle_step*i))), int(math.floor(sx+line_length*math.cos(angle_step*i)))) m1 = rr >= 0 m2 = rr < n m3 = cc >= 0 m4 = cc < m mall = m1 * m2 * m3 * m4 cc2 = cc[mall] rr2 = rr[mall] val2 = val[mall] line_arr[rr2,cc2] = val2 > 0 crossing_mask = (edges2 * line_arr) # TODO find one (first - best) crossing point and mark him p = find_first_marked_point(crossing_mask) if p != None: plt.plot([p[0]], [p[1]], "r+") dist_vector[i] = math.sqrt((p[0] - sx)*(p[0] - sx) + (p[1] - sy)*(p[1] - sy)) # plt.show() return (mask, dist_vector / np.min(dist_vector), centers2) if len(sys.argv) < 2: print("Too small arguments") sys.exit(1) (img_gray1, v1, centers1) = calculate_shape_vector(sys.argv[1],nsampling) if len(sys.argv) < 3: print("To small arguments to compare") sys.exit(0) (img_gray2, v2, centers2) = calculate_shape_vector(sys.argv[2],nsampling) # (img_gray2, v2) = calculate_shape_vector("italian-sole-new-800_1_2_1.jpg",nsampling) def compare_sets(c1, c2): k = spatial.KDTree(c1) s = 0.0 (n,m) = c2.shape for i in range(0, n): (d,idx) = k.query(c2[i,:]) s += d*d s /= float(n) return math.sqrt(s) print("v1") print(v1) print("v2") print(v2) diff = v1-v2 print("Diff: {}".format(diff)) mse = np.sum(diff*diff)/nsampling print("MSE: {}".format(MSE(v1,v2))) print("Diff between sets of points: {}" .format(compare_sets(centers1, centers2)))