#!/usr/bin/python3 import numpy as np import matplotlib.pyplot as plt import sys from scipy import ndimage from skimage import feature from skimage import filters from skimage.feature import corner_harris, corner_subpix, corner_peaks def detect_corner(img, windowx = 2, windowy = 2): (n,m) = img.shape corners = np.zeros((n,m), dtype=np.bool) nr_cuts = 0 for i in range(0, n): print("Row: {}".format(i)) for j in range(0, m): corner = False for k in range(-windowy, windowy): nr_cuts = 0 for l in range(-windowx, windowx): y = (i+k)%n x1 = (j+l)%m x2 = (j+l+1)%m if img[y,x1] ^ img[y,x2]: nr_cuts += 1 if nr_cuts > 1: corner = True # print("{}x{} is corner".format(j,i)) break corners[i,j] = corner return corners def produce_poi_list(img): r = [] (n,m) = img.shape for i in range(0, n): row = [] for j in range(0, m): if img[i,j]: row.append((float(j)/m,float(i)/n)) r.append(row) return r # not time-effective comparision # TODO compare only rows in the r window def compare_poi_list(pl1, pl2, r): matches = [] for pr1 in pl1: for (x1,y1) in pr1: for pr2 in pl2: for (x2,y2) in pr2: if r * r > ((x1 - x2)*(x1 - x2) + (y1-y2)*(y1-y2)): matches.append(((x1,y1),(x2,y2))) return matches file_path = sys.argv[1] print("File {} to be analysed".format(file_path)) img = ndimage.imread(file_path) img_gray = 0.21 * img[:,:,0] + 0.72 * img[:,:,1] + 0.07 * img[:,:,2] n,m = img_gray.shape print("Width {}, Height {}".format(m,n)) otsu_lvl = filters.threshold_otsu(img_gray) seg_shoe = img_gray <= otsu_lvl img_shoe_selected = seg_shoe * img_gray data_selected = img_gray[seg_shoe] shoe_otsu_lvl = filters.threshold_otsu(data_selected) img_sole_segs1 = img_shoe_selected <= shoe_otsu_lvl img_sole_segs = ndimage.median_filter(img_sole_segs1, 5) img_sole_segs_nr = np.array(img_sole_segs, np.int) k = np.ones((11, 11)) img_sole_seg_count = ndimage.convolve(img_sole_segs_nr, k) m1 = img_sole_seg_count >= 80 m2 = True ^ img_sole_segs # m2 = img_sole_seg_count <= 1 m3 = m1 * m2 # m3i = np.array(m3, np.int) corners = detect_corner(img_sole_segs) poi_list = produce_poi_list(corners) print(poi_list) m3i = np.array(corners, np.int) # color_red = np.ones((n,m,3)) * np.array([255, 0, 0]) color_red = 255 img_annotated = img_gray * (1 - m3i) + m3i * color_red # img_annotated = img_gray # plt.imshow(m1 * m2, cmap="Greys_r") # plt.imshow(img_annotated, cmap="Greys_r") # coords = corner_peaks(corner_harris(img_gray), min_distance=5) # coords_subpix = corner_subpix(img_gray, coords, window_size=13) fig = plt.figure() ax1 = fig.add_subplot(2,1,1) ax1.imshow(img_sole_segs, cmap="Greys_r") ax2 = fig.add_subplot(2,1,2) ax2.imshow(img_annotated, cmap="Greys_r") # ax2.plot(coords[:, 1], coords[:, 0], '.b', markersize=3) # ax2.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15) plt.show() plt.imsave("sole_seg.png", img_sole_segs)