code-examples/2015/2015_03/shoe-soles/poi_shoe_detection2.py

243 lines
6.8 KiB
Python

import numpy as np
import math
from scipy import ndimage,spatial
import matplotlib.pyplot as plt
from skimage import feature
from skimage.feature import corner_harris, corner_subpix, corner_peaks
from sklearn.cluster import KMeans
from skimage.filters import threshold_otsu
from skimage.draw import line_aa
import math
import sys
def grayscale_luminosity(img):
return 0.21*img[:,:,0] + 0.72 * img[:,:,1] + 0.07 * img[:,:,2]
def kmeans_cluster(img_gray):
img_gray_reshaped = img_gray.reshape((-1,1))
print("About to start k-means clustering")
k = KMeans(n_clusters = 5)
print("Starting k-means clustring")
k.fit(img_gray_reshaped)
print("Finished k-means clustering")
values = k.cluster_centers_.squeeze()
labels = k.labels_
return (values, labels)
def corners_seg(img_labels2):
coords = corner_peaks(corner_harris(img_labels2), min_distance=5)
coords_subpix = corner_subpix(img_labels2, coords, window_size=13)
return (coords, coords_subpix)
def reassign_labels(labels1, values1, labels2, values2):
# TODO not efficient computionally
if values1.length != values2.length:
return None
n = values1.length
c_min = 1e8 # TODO max value of float
reassignment = np.array((n, 2))
for i in range(0, n):
e1 = values1[i]
for j in range(0, n):
e2 = values2[j]
d = np.sum(np.abs(e2-e1))
if d < c_min:
c_min = d
reassignment[i,0] = labels1[i]
reassignment[i,1] = labels2[j]
return reassignment
def compare_by_poi(img1, img2, xwindow = 5, ywindow = 5):
# both images are matrix of 0s or 1s
k = np.ones((xwindow,ywindow))
middlex = (xwindow-1) / 2
middley = (ywindow-1) / 2
k[middlex,middley] = 0
img2_neighbour_count_int = ndimage.convolve(img2)
img2_neighbour_count_bool = img2_neighbour_count_int > 0
img2_neighbour_count_int2 = np.array(img2_neighbour_count_bool, dtype=np.uint32)
img_comparision = img2_neighbour_count_int2 * img1
n1 = np.sum(img1)
n2 = np.sum(img_comparision)
return float(n2)/float(n1)
def find_first_marked_point(crossing_mask):
(n,m) = crossing_mask.shape
for i in range(0,n):
for j in range(0,m):
if crossing_mask[i,j]:
return (j,i)
return None
def MSE(a1, a2):
c = 1
for n in a1.shape:
c *= n
d = a1 - a2
return np.sum(d*d) / n
nsampling = 100
def calculate_shape_vector(
path,
nsampling,
median_filter_size = 10,
sweep_line_length = 1024.0):
img = ndimage.imread(path)
print("Image read")
img_gray_not_filtered = grayscale_luminosity(img)
img_gray = ndimage.median_filter(img_gray_not_filtered,
size=median_filter_size)
# fig = plt.figure(figsize=(15,15))
otsu_lvl = threshold_otsu(img_gray)
print(otsu_lvl)
mask = img_gray <= otsu_lvl
# plt.imshow(mask, cmap="Greys_r")
# plt.show()
otsu_sub_mask_lvl = threshold_otsu(img_gray[mask])
mask2 = img_gray <= otsu_sub_mask_lvl
sub_mask = mask * mask2
sub_mask2 = mask * (True ^ mask2)
# plt.imshow(sub_mask, cmap="Greys_r")
# plt.show()
# plt.imshow(sub_mask2, cmap="Greys_r")
# plt.show()
label_im, nb_labels = ndimage.label(sub_mask2)
print("Nr of regions: {}".format(nb_labels))
sizes = ndimage.sum(sub_mask2, label_im, range(nb_labels + 1))
mask_size = sizes < 500
print("Liczba usunietych: {}".format(np.sum(mask_size)))
remove_pixel = mask_size[label_im]
label_im[remove_pixel] = 0
# plt.imshow(label_im)
# plt.show()
centers = np.zeros((nb_labels+1-np.sum(mask_size),2))
idx = 0
for i in range(0, nb_labels+1):
if mask_size[i]:
continue
# processing that means calculating segment parameters
mask_segment = label_im == i
centers[idx,:] = ndimage.center_of_mass(mask_segment)
idx += 1
print("Centers: {}".format(centers))
centers2 = np.copy(centers)
(n,m) = img_gray.shape
centers2[:,0] = centers[:,0] / float(n)
centers2[:,1] = centers[:,0] / float(m)
print("Centers 2: {}".format(centers2))
mask_int = np.array(mask, dtype=np.uint32)
label_im, nb_labels = ndimage.label(mask_int)
sizes = ndimage.sum(mask, label_im, range(nb_labels + 1))
mask_size = sizes < 0
remove_pixel = mask_size[label_im]
label_im[remove_pixel] = 0
edges2 = feature.canny(label_im > 0)
# plt.imshow(edges2, cmap="Greys_r")
sx = 0.0
sy = 0.0
c = 0
(n,m) = edges2.shape
print("Width: {}, height: {}".format(n, m))
for i in range(0, n):
for j in range(0, m):
if edges2[i,j]:
c += 1
sx += j
sy += i
sx /= c
sy /= c
print("Middle ({}x{})".format(sx,sy))
# plt.plot([sx], [sy], "r+")
line_length = sweep_line_length
angle_step = 2.0 * np.pi / nsampling
dist_vector = np.zeros((nsampling), dtype=np.float32)
dist_vector[:] = 1e8 # TODO add here infinitium
for i in range(0,nsampling):
line_arr = np.zeros((n,m), dtype=np.bool)
rr,cc,val = line_aa(int(math.floor(sy)),
int(math.floor(sx)),
int(math.floor(sy+line_length*math.sin(angle_step*i))),
int(math.floor(sx+line_length*math.cos(angle_step*i))))
m1 = rr >= 0
m2 = rr < n
m3 = cc >= 0
m4 = cc < m
mall = m1 * m2 * m3 * m4
cc2 = cc[mall]
rr2 = rr[mall]
val2 = val[mall]
line_arr[rr2,cc2] = val2 > 0
crossing_mask = (edges2 * line_arr)
# TODO find one (first - best) crossing point and mark him
p = find_first_marked_point(crossing_mask)
if p != None:
plt.plot([p[0]], [p[1]], "r+")
dist_vector[i] = math.sqrt((p[0] - sx)*(p[0] - sx) + (p[1] - sy)*(p[1] - sy))
# plt.show()
return (mask, dist_vector / np.min(dist_vector), centers2)
if len(sys.argv) < 2:
print("Too small arguments")
sys.exit(1)
(img_gray1, v1, centers1) = calculate_shape_vector(sys.argv[1],nsampling)
if len(sys.argv) < 3:
print("To small arguments to compare")
sys.exit(0)
(img_gray2, v2, centers2) = calculate_shape_vector(sys.argv[2],nsampling)
# (img_gray2, v2) = calculate_shape_vector("italian-sole-new-800_1_2_1.jpg",nsampling)
def compare_sets(c1, c2):
k = spatial.KDTree(c1)
s = 0.0
(n,m) = c2.shape
for i in range(0, n):
(d,idx) = k.query(c2[i,:])
s += d*d
s /= float(n)
return math.sqrt(s)
print("v1")
print(v1)
print("v2")
print(v2)
diff = v1-v2
print("Diff: {}".format(diff))
mse = np.sum(diff*diff)/nsampling
print("MSE: {}".format(MSE(v1,v2)))
print("Diff between sets of points: {}"
.format(compare_sets(centers1, centers2)))