64 lines
1.7 KiB
Python
64 lines
1.7 KiB
Python
from dect import calc_shape_corners
|
|
import math
|
|
from scipy import ndimage
|
|
from skimage import filters
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
img = ndimage.imread("/home/tpolgrabia/Pobrane/CSFID/tracks_cropped/00003.jpg")
|
|
(n,m) = img.shape
|
|
otsu_lvl = filters.threshold_otsu(img)
|
|
m = img <= otsu_lvl
|
|
img_label, nb_labels = ndimage.label(m)
|
|
sizes = ndimage.sum(m, img_label, range(0, nb_labels+1))
|
|
min_seg_size = 100
|
|
to_be_removed_segs = sizes < min_seg_size
|
|
remove_mask = to_be_removed_segs[img_label]
|
|
img_label[remove_mask] = 0
|
|
labels = np.unique(img_label)
|
|
nb_labels = len(labels)
|
|
img_label = np.searchsorted(labels, img_label)
|
|
labels = np.unique(img_label)
|
|
centers = ndimage.center_of_mass(m, img_label, labels)
|
|
centers = np.array(centers, dtype=np.float)
|
|
|
|
(nc,who_cares) = centers.shape
|
|
|
|
def distance_point(m1, m2):
|
|
df = m1-m2
|
|
df2 = df*df
|
|
sd2 = np.sum(df2)
|
|
d = math.sqrt(sd2)
|
|
return d
|
|
|
|
# TODO check if generates all rates of distance pairs
|
|
for i in range(0, nc):
|
|
for j in range(0, i):
|
|
for k in range(0, j):
|
|
m1 = centers[i,:]
|
|
m2 = centers[j,:]
|
|
m3 = centers[k,:]
|
|
d1 = distance_point(m1, m2)
|
|
d2 = distance_point(m2, m3)
|
|
d = d1 / d2
|
|
print("{}-{}/{}-{}: {}".format(i, j, j, k, d))
|
|
|
|
corners = np.zeros(img.shape, dtype=np.bool)
|
|
|
|
for i in range(0, nb_labels):
|
|
mseg = img_label == i
|
|
# plt.imshow(mseg, cmap="Greys_r")
|
|
seg_corner = calc_shape_corners(mseg)
|
|
corners = corners + seg_corner
|
|
|
|
(n,m) = img.shape
|
|
mat_x = np.tile(np.arange(0, m),n).reshape((n,m))
|
|
mat_y = np.tile(np.arange(0, n),m).reshape((m,n)).T
|
|
|
|
xs = mat_x[corners]
|
|
ys = mat_y[corners]
|
|
|
|
plt.imshow(img, cmap="Greys_r")
|
|
plt.plot(xs, ys, "b+")
|
|
plt.show()
|