115 lines
3.2 KiB
Python
115 lines
3.2 KiB
Python
#!/usr/bin/python3
|
|
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import sys
|
|
from scipy import ndimage
|
|
from skimage import feature
|
|
from skimage import filters
|
|
from skimage.feature import corner_harris, corner_subpix, corner_peaks
|
|
|
|
def detect_corner(img, windowx = 2, windowy = 2):
|
|
(n,m) = img.shape
|
|
corners = np.zeros((n,m), dtype=np.bool)
|
|
nr_cuts = 0
|
|
for i in range(0, n):
|
|
print("Row: {}".format(i))
|
|
for j in range(0, m):
|
|
corner = False
|
|
for k in range(-windowy, windowy):
|
|
nr_cuts = 0
|
|
for l in range(-windowx, windowx):
|
|
y = (i+k)%n
|
|
x1 = (j+l)%m
|
|
x2 = (j+l+1)%m
|
|
if img[y,x1] ^ img[y,x2]:
|
|
nr_cuts += 1
|
|
if nr_cuts > 1:
|
|
corner = True
|
|
# print("{}x{} is corner".format(j,i))
|
|
break
|
|
corners[i,j] = corner
|
|
return corners
|
|
|
|
def produce_poi_list(img):
|
|
r = []
|
|
(n,m) = img.shape
|
|
for i in range(0, n):
|
|
row = []
|
|
for j in range(0, m):
|
|
if img[i,j]:
|
|
row.append((float(j)/m,float(i)/n))
|
|
r.append(row)
|
|
|
|
return r
|
|
|
|
# not time-effective comparision
|
|
# TODO compare only rows in the r window
|
|
def compare_poi_list(pl1, pl2, r):
|
|
matches = []
|
|
for pr1 in pl1:
|
|
for (x1,y1) in pr1:
|
|
for pr2 in pl2:
|
|
for (x2,y2) in pr2:
|
|
if r * r > ((x1 - x2)*(x1 - x2) + (y1-y2)*(y1-y2)):
|
|
matches.append(((x1,y1),(x2,y2)))
|
|
return matches
|
|
|
|
file_path = sys.argv[1]
|
|
print("File {} to be analysed".format(file_path))
|
|
|
|
img = ndimage.imread(file_path)
|
|
img_gray = 0.21 * img[:,:,0] + 0.72 * img[:,:,1] + 0.07 * img[:,:,2]
|
|
|
|
n,m = img_gray.shape
|
|
|
|
print("Width {}, Height {}".format(m,n))
|
|
|
|
otsu_lvl = filters.threshold_otsu(img_gray)
|
|
seg_shoe = img_gray <= otsu_lvl
|
|
img_shoe_selected = seg_shoe * img_gray
|
|
data_selected = img_gray[seg_shoe]
|
|
shoe_otsu_lvl = filters.threshold_otsu(data_selected)
|
|
img_sole_segs1 = img_shoe_selected <= shoe_otsu_lvl
|
|
img_sole_segs = ndimage.median_filter(img_sole_segs1, 5)
|
|
img_sole_segs_nr = np.array(img_sole_segs, np.int)
|
|
k = np.ones((11, 11))
|
|
img_sole_seg_count = ndimage.convolve(img_sole_segs_nr, k)
|
|
m1 = img_sole_seg_count >= 80
|
|
m2 = True ^ img_sole_segs
|
|
# m2 = img_sole_seg_count <= 1
|
|
m3 = m1 * m2
|
|
# m3i = np.array(m3, np.int)
|
|
|
|
corners = detect_corner(img_sole_segs)
|
|
poi_list = produce_poi_list(corners)
|
|
print(poi_list)
|
|
|
|
m3i = np.array(corners, np.int)
|
|
|
|
# color_red = np.ones((n,m,3)) * np.array([255, 0, 0])
|
|
color_red = 255
|
|
img_annotated = img_gray * (1 - m3i) + m3i * color_red
|
|
# img_annotated = img_gray
|
|
|
|
|
|
# plt.imshow(m1 * m2, cmap="Greys_r")
|
|
# plt.imshow(img_annotated, cmap="Greys_r")
|
|
|
|
# coords = corner_peaks(corner_harris(img_gray), min_distance=5)
|
|
# coords_subpix = corner_subpix(img_gray, coords, window_size=13)
|
|
|
|
fig = plt.figure()
|
|
ax1 = fig.add_subplot(2,1,1)
|
|
ax1.imshow(img_sole_segs, cmap="Greys_r")
|
|
|
|
ax2 = fig.add_subplot(2,1,2)
|
|
ax2.imshow(img_annotated, cmap="Greys_r")
|
|
# ax2.plot(coords[:, 1], coords[:, 0], '.b', markersize=3)
|
|
# ax2.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15)
|
|
|
|
plt.show()
|
|
|
|
plt.imsave("sole_seg.png", img_sole_segs)
|
|
|